Lecture 15
 14.5 Properties of the gradient 14.6 Tangent planes

Jeremiah Southwick

February 25, 2019

Things to note

Upcoming dates:
Wednesday, February 27: Quiz 7
Monday, March 4: Quiz 8 and WF drop date (see grade calculation sheet on Blackboard)
Wednesday, March 6: Review
Friday, March 8: Exam 2

Last class

Definition

The gradient of $f(x, y)$ is

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}} .
$$

Geometric info about gradient

Consider $\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}$.

Geometric info about gradient

Consider $\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}$.
Question
What's another formula for $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$?

Geometric info about gradient

Consider $\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}$.
Question
What's another formula for $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$?
Answer
$\|\overrightarrow{\mathbf{v}}\|\|\overrightarrow{\mathbf{w}}\| \cos (\theta)$.

Geometric info about gradient

Consider $\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}$.
Question
What's another formula for $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$?
Answer
$\|\overrightarrow{\mathbf{v}}\|\|\overrightarrow{\mathbf{w}}\| \cos (\theta)$.
Thus
$\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}=\|\nabla f(a, b)\|\|\overrightarrow{\mathbf{u}}\| \cos (\theta)=\|\nabla f(a, b)\| \cos (\theta)$

Geometric info about gradient

$$
\left(D_{\overline{\mathbf{u}}} f\right)(a, b)=\|\nabla f(a, b)\| \cos (\theta)
$$

Question
Which θ maximize the directional derivative? Which θ minimize it? Which θ make it 0?

Geometric info about gradient

$$
\left(D_{\overline{\mathbf{u}}} f\right)(a, b)=\|\nabla f(a, b)\| \cos (\theta)
$$

Question

Which θ maximize the directional derivative? Which θ minimize it? Which θ make it 0?
At $(a, b), f$ increases most rapidly in the direction of $\nabla f(a, b)$. ($\theta=0$).

At $(a, b), f$ decreases most rapidly in the opposite direction of $\nabla f(a, b) .(\theta=\pi)$.

At $(a, b), f$ is neither rising nor dropping in the directions orthogonal to $\nabla f(a, b) .(\theta=\pi / 2)$.

Gradient example

Example
Let $f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}+x y-x$. Find the directions in which
(a) f increases most rapidly at $(1,1)$.
(b) f decreases most rapidly at $(1,1)$.
(c) the height of f does not change (i.e., slope is 0).

Gradient example

Example

Let $f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}+x y-x$. Find the directions in which
(a) f increases most rapidly at $(1,1)$.
(b) f decreases most rapidly at $(1,1)$.
(c) the height of f does not change (i.e., slope is 0).

We have $\nabla f=\langle x+y-1, y+x\rangle$. Thus $\nabla f(1,1)=\langle 1,2\rangle$.
The direction of most rapid increase will be the unit vector in the direction of $\langle 1,2\rangle$, or $\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$.
The direction of most rapid decrease will be the unit vector in the opposite direction of $\nabla f(1,1)$, or $\left\langle-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle$
The direction of zero change is any direction orthogonal to the gradient at $(1,1)$. These two vectors are $\left\langle-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle$ and $\left\langle\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle$.

Properties of the gradient (page 836)

The gradient is essentially a derivative vector, so it satisfies many properties of derivatives.

$$
\begin{aligned}
& \text { 1,2. } \nabla(f \pm g)=\nabla f \pm \nabla g \\
& \text { 3. } \nabla(k f)=k \nabla f \text { for any number } k \\
& \text { 4. } \nabla(f g)=f \nabla g+g \nabla f \\
& \text { 5. } \nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}
\end{aligned}
$$

14.6 Tangent planes

14.6 Tangent planes

Question
How do we find a plane that is tangent to a function $z=f(x, y)$?

14.6 Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
First we need a normal vector $\overrightarrow{\mathbf{n}}$ and a point $P_{0}=(a, b, c)$ in the plane. Then the equation is

$$
\overrightarrow{\mathbf{n}} \cdot\langle x-a, y-b, z-c\rangle=0
$$

14.6 Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
First we need a normal vector $\overrightarrow{\mathbf{n}}$ and a point $P_{0}=(a, b, c)$ in the plane. Then the equation is

$$
\overrightarrow{\mathbf{n}} \cdot\langle x-a, y-b, z-c\rangle=0
$$

Idea: First find some lines tangent to the function.

14.6 Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
First we need a normal vector $\overrightarrow{\mathbf{n}}$ and a point $P_{0}=(a, b, c)$ in the plane. Then the equation is

$$
\overrightarrow{\mathbf{n}} \cdot\langle x-a, y-b, z-c\rangle=0
$$

Idea: First find some lines tangent to the function.
Start off with tangent lines in the x - and y-directions.

Tangent planes

Question
How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Tangent planes

Question

How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Tangent planes

Question

How do we find the slope of a function $z=f(x, y)$ in the x-direction?

This line is given by $z-f(a, b)=f_{x}(a, b)(x-a)$ or

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Tangent planes

We can do the same thing in the y-direction.

Tangent planes

We can do the same thing in the y-direction.

This line is given by $z-f(a, b)=f_{y}(a, b)(y-b)$ or

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle .
$$

Tangent planes

Question
How do we find a plane that is tangent to a function $z=f(x, y)$?

Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
Two tangent lines:

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

and

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
Two tangent lines:

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

and

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Point: $P_{0}=(a, b, f(a, b))$

Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
Two tangent lines:

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

and

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Point: $P_{0}=(a, b, f(a, b))$
Normal vector: $\overrightarrow{\mathbf{n}}$ is the cross product of the direction vectors of the lines.

Tangent planes

Point: $P_{0}=(a, b, f(a, b))$

$$
\overrightarrow{\mathbf{n}}=
$$

Tangent planes

Point: $P_{0}=(a, b, f(a, b))$

$$
\overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
0 & 1 & f_{y}(a, b) \\
1 & 0 & f_{x}(a, b)
\end{array}\right|=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle
$$

Tangent planes

Point: $P_{0}=(a, b, f(a, b))$

$$
\overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
0 & 1 & f_{y}(a, b) \\
1 & 0 & f_{x}(a, b)
\end{array}\right|=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle
$$

Then the equation of the plane is $\overrightarrow{\mathbf{n}} \cdot\langle x-a, y-b, z-f(a, b)\rangle=0$ or

$$
f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-f(a, b))=0
$$

Solving for z, we have

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Tangent plane example

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example
Find the tangent plane to $z=x \cos (y)-y e^{x}$ at $(\ln (2), 0, \ln (2))$.

Tangent plane example

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example
Find the tangent plane to $z=x \cos (y)-y e^{x}$ at $(\ln (2), 0, \ln (2))$.
We have $\nabla f=\left\langle\cos (y)-y e^{x},-x \sin (y)-e^{x}\right\rangle$ and thus the equation is

$$
(x-\ln (2))+(-2)(y-0)-(z-\ln (2))=0
$$

or

$$
z=x-2 y
$$

