Lecture 15 14.5 Properties of the gradient 14.6 Tangent planes

Jeremiah Southwick

February 25, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Upcoming dates: Wednesday, February 27: Quiz 7 Monday, March 4: Quiz 8 and WF drop date (see grade calculation sheet on Blackboard) Wednesday, March 6: Review Friday, March 8: Exam 2

Last class

Definition The gradient of f(x, y) is

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$$

$$(D_{\vec{u}}f)(a,b) = [\nabla f(a,b)] \cdot \vec{u}.$$

Consider
$$(D_{\vec{u}}f)(a,b) = [\nabla f(a,b)] \cdot \vec{u}$$
.

<□ > < @ > < E > < E > E のQ @

Consider
$$(D_{\vec{u}}f)(a,b) = [\nabla f(a,b)] \cdot \vec{u}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question

What's another formula for $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}$?

Consider
$$(D_{\vec{u}}f)(a,b) = [\nabla f(a,b)] \cdot \vec{u}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question What's another formula for $\vec{v} \cdot \vec{w}$?

Answer $\|\vec{\mathbf{v}}\|\|\vec{\mathbf{w}}\|\cos(\theta).$

```
Consider (D_{\vec{u}}f)(a,b) = [\nabla f(a,b)] \cdot \vec{u}.
```

Question What's another formula for $\vec{v} \cdot \vec{w}$?

```
Answer
\|\vec{\mathbf{v}}\|\|\vec{\mathbf{w}}\|\cos(\theta).
Thus
```

 $(D_{\vec{u}}f)(a,b) = [\nabla f(a,b)] \cdot \vec{u} = \|\nabla f(a,b)\| \|\vec{u}\| \cos(\theta) = \|\nabla f(a,b)\| \cos(\theta)$

$$(D_{\vec{u}}f)(a,b) = \|\nabla f(a,b)\|\cos(\theta)$$

Question

Which θ maximize the directional derivative? Which θ minimize it? Which θ make it 0?

$$(D_{\vec{u}}f)(a,b) = \|\nabla f(a,b)\|\cos(\theta)$$

Question

Which θ maximize the directional derivative? Which θ minimize it? Which θ make it 0?

At (a, b), f increases most rapidly in the direction of $\nabla f(a, b)$. $(\theta = 0)$.

At (a, b), f decreases most rapidly in the opposite direction of $\nabla f(a, b)$. $(\theta = \pi)$.

At (a, b), f is neither rising nor dropping in the directions orthogonal to $\nabla f(a, b)$. $(\theta = \pi/2)$.

Gradient example

Example Let $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2} + xy - x$. Find the directions in which (a) f increases most rapidly at (1,1). (b) f decreases most rapidly at (1,1). (c) the height of f does not change (i.e., slope is 0).

Gradient example

Example Let $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2} + xy - x$. Find the directions in which (a) f increases most rapidly at (1,1). (b) f decreases most rapidly at (1,1). (c) the height of f does not change (i.e., slope is 0).

We have $\nabla f = \langle x + y - 1, y + x \rangle$. Thus $\nabla f(1, 1) = \langle 1, 2 \rangle$. The direction of most rapid increase will be the unit vector in the direction of $\langle 1, 2 \rangle$, or $\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$. The direction of most rapid decrease will be the unit vector in the opposite direction of $\nabla f(1, 1)$, or $\langle -\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle$. The direction of zero change is any direction orthogonal to the gradient at (1, 1). These two vectors are $\langle -\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle$ and $\langle \frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \rangle$. Properties of the gradient (page 836)

The gradient is essentially a derivative vector, so it satisfies many properties of derivatives.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1,2.
$$\nabla(f \pm g) = \nabla f \pm \nabla g$$

3. $\nabla(kf) = k\nabla f$ for any number k
4. $\nabla(fg) = f\nabla g + g\nabla f$
5. $\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Question

How do we find a plane that is tangent to a function z = f(x, y)?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

How do we find a plane that is tangent to a function z = f(x, y)? First we need a normal vector $\vec{\mathbf{n}}$ and a point $P_0 = (a, b, c)$ in the plane. Then the equation is

$$\vec{\mathbf{n}} \cdot \langle x - a, y - b, z - c \rangle = 0.$$

Question

How do we find a plane that is tangent to a function z = f(x, y)? First we need a normal vector $\vec{\mathbf{n}}$ and a point $P_0 = (a, b, c)$ in the plane. Then the equation is

$$\vec{\mathbf{n}} \cdot \langle x - a, y - b, z - c \rangle = 0.$$

Idea: First find some lines tangent to the function.

Question

How do we find a plane that is tangent to a function z = f(x, y)? First we need a normal vector $\vec{\mathbf{n}}$ and a point $P_0 = (a, b, c)$ in the plane. Then the equation is

$$\vec{\mathbf{n}} \cdot \langle x - a, y - b, z - c \rangle = 0.$$

Idea: First find some lines tangent to the function.

Start off with tangent lines in the x- and y-directions.

Question

How do we find the slope of a function z = f(x, y) in the x-direction?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question

How do we find the slope of a function z = f(x, y) in the x-direction?

イロト イポト イヨト イヨト

э

Question

How do we find the slope of a function z = f(x, y) in the x-direction?

This line is given by $z - f(a, b) = f_x(a, b)(x - a)$ or

$$\vec{\mathbf{r}}(t) = \langle a, b, f(a, b) \rangle + t \langle 1, 0, f_x(a, b) \rangle.$$

We can do the same thing in the y-direction.

・ロト ・聞ト ・ヨト ・ヨト

æ

We can do the same thing in the y-direction.

This line is given by $z - f(a, b) = f_y(a, b)(y - b)$ or

 $ec{\mathbf{r}}(t) = \langle a, b, f(a, b)
angle + t \langle 0, 1, f_y(a, b)
angle.$

Question

How do we find a plane that is tangent to a function z = f(x, y)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question

How do we find a plane that is tangent to a function z = f(x, y)? Two tangent lines:

$$ec{\mathbf{r}}(t) = \langle \mathsf{a}, \mathsf{b}, \mathsf{f}(\mathsf{a}, \mathsf{b})
angle + t \langle 0, 1, \mathsf{f}_{\mathsf{y}}(\mathsf{a}, \mathsf{b})
angle$$

and

$$ec{\mathbf{r}}(t) = \langle \mathsf{a}, \mathsf{b}, \mathsf{f}(\mathsf{a}, \mathsf{b})
angle + t \langle 1, 0, \mathsf{f}_{\mathsf{x}}(\mathsf{a}, \mathsf{b})
angle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

How do we find a plane that is tangent to a function z = f(x, y)? Two tangent lines:

$$ec{\mathbf{r}}(t) = \langle \mathsf{a}, \mathsf{b}, \mathsf{f}(\mathsf{a}, \mathsf{b})
angle + t \langle 0, 1, \mathsf{f}_{\mathsf{y}}(\mathsf{a}, \mathsf{b})
angle$$

and

$$ec{\mathbf{r}}(t) = \langle a, b, f(a, b)
angle + t \langle 1, 0, f_{x}(a, b)
angle.$$

Point: $P_0 = (a, b, f(a, b))$

Question

How do we find a plane that is tangent to a function z = f(x, y)? Two tangent lines:

$$ec{\mathbf{r}}(t) = \langle \mathsf{a}, \mathsf{b}, \mathsf{f}(\mathsf{a}, \mathsf{b})
angle + t \langle 0, 1, \mathsf{f}_{\mathsf{y}}(\mathsf{a}, \mathsf{b})
angle$$

and

$$ec{\mathbf{r}}(t) = \langle a, b, f(a, b)
angle + t \langle 1, 0, f_x(a, b)
angle.$$

Point: $P_0 = (a, b, f(a, b))$ Normal vector: $\vec{\mathbf{n}}$ is the cross product of the direction vectors of the lines.

Point:
$$P_0 = (a, b, f(a, b))$$

$$\vec{n} =$$

Point:
$$P_0 = (a, b, f(a, b))$$

$$\vec{\mathbf{n}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ 0 & 1 & f_y(a, b) \\ 1 & 0 & f_x(a, b) \end{vmatrix} = \langle f_x(a, b), f_y(a, b), -1 \rangle$$

Point:
$$P_0 = (a, b, f(a, b))$$

$$\vec{\mathbf{n}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ 0 & 1 & f_y(a, b) \\ 1 & 0 & f_x(a, b) \end{vmatrix} = \langle f_x(a, b), f_y(a, b), -1 \rangle$$

Then the equation of the plane is $\vec{\mathbf{n}} \cdot \langle x - a, y - b, z - f(a, b) \rangle = 0$ or

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0.$$

Solving for z, we have

$$z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tangent plane example

$$z = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).$$

Example

Find the tangent plane to $z = x \cos(y) - ye^x$ at $(\ln(2), 0, \ln(2))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tangent plane example

$$z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

Example

Find the tangent plane to $z = x \cos(y) - ye^x$ at $(\ln(2), 0, \ln(2))$. We have $\nabla f = \langle \cos(y) - ye^x, -x \sin(y) - e^x \rangle$ and thus the equation is

$$(x - \ln(2)) + (-2)(y - 0) - (z - \ln(2)) = 0$$

or

$$z=x-2y.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()